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N E U R O S C I E N C E

Benchmarking macaque brain gene expression for 
horizontal and vertical translation
Andrea I. Luppi1,2,3*, Zhen-Qi Liu1, Justine Y. Hansen1, Rodrigo Cofre4, Meiqi Niu5, Elena Kuzmin6,7, 
Seán Froudist-Walsh8, Nicola Palomero-Gallagher5,9, Bratislav Misic1

The spatial patterning of gene expression shapes cortical organization and function. The macaque is a fundamen-
tal model organism in neuroscience, but the translational potential of macaque gene expression rests on the as-
sumption that it is a good proxy for patterns of corresponding proteins (vertical translation) and for patterns of 
orthologous human genes (horizontal translation). Here, we systematically benchmark regional gene expression 
in macaque cortex against (i) macaque cortical receptor density and in vivo and ex vivo microstructure and (ii) 
human cortical gene expression. We find moderate cortex-wide correspondence between macaque gene expres-
sion and protein density, which improves by considering layer-specific gene expression. Half of the examined 
genes exhibit significant correlation between macaque and human across the cortex. Interspecies correspon-
dence of gene expression is greater in unimodal than in transmodal cortex, recapitulating evolutionary cortical 
expansion and gene-protein correspondence in the macaque. These results showcase the potential and limita-
tions of macaque cortical transcriptomics for translational discovery within and across species. 

INTRODUCTION
The macaque is a foundational and widely used model organism in 
neuroscience (1–7). Animal models allow invasive tracing, imaging, 
and recording, as well as numerous experimental manipulations 
that would not be possible in humans, allowing scientists to address 
a wider range of scientific questions (8). Compared to rodents and 
other nonhuman primates (NHPs) such as marmosets, the macaque 
has several desirable features for studying human brain structure 
and function. These include shared evolutionary history, a gyrified 
cortex, and a more human-like behavioral repertoire including 
greater ability to exert cognitive control against distractors during 
cognitive performance (1, 3). These similarities are grounded in the 
genetic relatedness between the two species (92% genetic alignment 
with Homo sapiens) (9). As a result, the macaque has been used to 
study the evolutionary and developmental origins of brain anatomy, 
cognition, and behavior (10), as well as the consequences of targeted 
genetic mutations in transgenic animals (11–13).

Recent advances in high-throughput sequencing make it possi-
ble to map spatial patterns of gene expression across the cortex of 
humans and other species. This is valuable because gene expression 
is heterogeneous across the cortex: Spatial patterns of gene expres-
sion provide a blueprint for the brain’s structural and functional ar-
chitecture (14–17). Multiple reports have inferred transcriptional 
signatures of cell types (17–20), neurotransmitter receptors (21–24), 
laminar differentiation (25), cortical thickness (17,  26), structural 
and functional connectivity (27–29), brain dynamics (30, 31), cog-
nitive specialization (32), development (26), and disease (18, 33, 34), 

among others (35). Key to this endeavor has been the development 
of comprehensive spatial transcriptomics datasets. However, until 
recently, databases of comprehensive cortical gene expression have 
been restricted to human (15) and mouse (14, 36). An exciting re-
cent development is the availability of regionally resolved transcrip-
tomics for the macaque brain (16, 17, 37), providing an unprecedented 
opportunity to combine this species’ experimental accessibility and 
genetic similarity to humans (38).

Effective translational discovery from macaque gene expression 
depends on two fundamental questions. The first question is whether 
orthologous genes display similar spatial patterning across human 
and macaque cortex. In other words, can regionally specific gene 
expression findings in the macaque be extrapolated to the human? 
The second question is whether spatial patterns of protein-coding 
genes in the macaque are a good proxy for spatial patterns of protein 
density in the same species, given the numerous intervening steps 
between mRNA transcription and expression of the corresponding 
protein at its final location. In other words, if we know the regional 
expression pattern of a gene from the macaque brain, can we infer 
the regional distribution of the protein that this gene codes for? 
Ultimately, as the field embarks toward comprehensive transcrip-
tional mapping of the macaque brain, it is necessary to benchmark 
both the horizontal translational potential of these datasets (from 
macaque gene expression to human gene expression) (38) and their 
vertical translational potential (from macaque gene expression to 
other modalities within the macaque brain) (38).

Here, we address these questions by analyzing a recently released 
database of Macaca fascicularis cortical gene expression (16) from 
high-resolution, large–field of view spatial transcriptomics [spatio-
temporal enhanced resolution omics-sequencing (stereo-seq)] (36). 
To benchmark horizontal translation from macaque to human, we 
compare macaque stereo-seq transcriptomics with human cortical 
gene expression from postmortem microarray data of six adult 
donors’ brains, made available by the Allen Human Brain Atlas 
(AHBA) (15, 39). To benchmark vertical translation between differ-
ent data modalities within the macaque, we compare macaque corti-
cal gene expression (16) against measurements of receptor density 
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in the cortex of M. fascicularis obtained from postmortem autoradi-
ography (40) (Fig. 1). Specifically, we focus on neurotransmitter re-
ceptors, a class of protein complexes that are essential for brain 
function, and therefore of particular interest in both basic research 
and clinical applications. Assessing the correspondence between 
gene expression and receptor density is of particular interest be-
cause gene expression is often used as a proxy for receptor density in 
the brain (22–24, 41–46). However, measurements of gene expres-
sion and protein density do not always align (47–54). In the present 
report, we address these fundamental questions by assessing the ex-
tent to which gene expression in the macaque cortex reflects human 
gene expression, and the extent to which it reflects protein availabil-
ity in macaque.

RESULTS
We analyze three openly available datasets:

1. Macaque cortical stereo-seq gene expression (16).

2. Macaque cortical receptor density per neuron from in vitro 
autoradiography (40).

3. Human cortical microarray gene expression (15).
We further validate our results using measures of in vivo intra-

cortical myelination and ex vivo density of the calcium-binding 
proteins parvalbumin and calretinin for the macaque cortex. Re-
sults are also replicated using macaque bulk RNA sequencing 
(RNA-seq) measures of gene expression. To obtain a common 
space for comparison, we apply the canonical Regional Mapping 
(RM) parcellation of the macaque cortex developed by Kötter and 
Wanke (55, 56), alongside its recent translation to the human brain 
(57), allowing us to obtain a one-to-one mapping between regions 
in the two species (fig. S1; see Materials and Methods for details). 
We then ask two questions. First: what is the correspondence 
between macaque gene expression and neurotransmitter receptor 
density across cortical areas? Second: what is the correspondence 
between macaque cortical gene expression and human cortical 
gene expression?

Fig. 1. Benchmarking macaque cortical gene expression for horizontal and vertical translation. We compare macaque cortical gene expression from stereo-seq (21) 
(A) with (B) human gene expression from microarray in homologous regions (20) (horizontal translation between species). We also compare macaque cortical gene ex-
pression with (C) macaque protein density of receptors quantified from autoradiography (50), as well as in vivo intracortical myelination from T1w:T2w MRI ratio, and 
parvalbumin and calretinin density from immunohistochemistry (vertical translation within the macaque).
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Gene-receptor correspondence in the macaque cortex
To determine whether gene expression is a suitable proxy for recep-
tor density per neuron across macaque cortex, we compare stereo-
seq macaque gene expression with quantitative measurements of 
corresponding receptor density from in vitro autoradiography, which 
uses radioactive ligands to quantify the endogenous receptors bound 
in the cell membrane (16, 40). We focus on 13 receptors, covering 
both ionotropic and metabotropic receptors and spanning six neu-
rotransmitter systems: noradrenergic (α1, α2), serotonergic (5HT1A, 
5HT2A), dopaminergic (D1), cholinergic (M1, M2), glutamatergic 
(AMPA, kainate, and NMDA), and GABAergic (GABAA, GABAB, 
and GABAA∕BZ).

Neurotransmitter receptors can be classified as ionotropic (if 
signal transduction is mediated by ion channels) or metabotropic 
(G protein coupled). Ionotropic receptors are multimeric protein 
complexes, meaning that they consist of multiple subunits bound 
in the cell membrane, each encoded by a distinct gene. Metabo-
tropic receptors are monomeric complexes: There is only a single 
protein embedded in the membrane, which is therefore encoded by 
a single gene. For monomeric receptors, we correlated regional pro-
tein density (from autoradiography) with regional expression of the 
corresponding gene (from stereo-seq). For multimeric receptors, in 
our main analysis, we show correlations between regional receptor 
density and regional expression of genes coding for the same recep-
tor subunits as used in (47) (see Materials and Methods for details). 
The complete set of genes related to receptor subunits is shown in 
fig. S2.

Figure 2 shows the regional correlation between receptor den-
sity per neuron (x axis) and gene expression (y axis) for each re-
ceptor (i.e., each data point is one region of the RM atlas of 
macaque cortex). Because the brain exhibits nontrivial levels of 
spatial autocorrelation, traditional significance testing is not ap-
propriate due to the inflated rate of false positives (58). Therefore, 
we assess the statistical significance of correlations between brain 
maps, against null distributions of surrogate brain maps that pre-
serve the level of spatial autocorrelation in the data, generated 
using Moran Spectral Randomization (59) (see Materials and 
Methods for details). Throughout the article, significant associa-
tions (P < 0.05) are shown in indigo.

We find that a modest proportion of macaque neurotransmitter 
receptors correlate significantly with the expression of their main 
corresponding genes (5 out of 18 or 28%; Fig. 2), which is somewhat 
improved when considering the full set of receptor subunits for glu-
tamate and GABA (24 out of 55, or 43.6%; fig. S2). However, the 
proportion of significant correlations remain around 30% after ad-
justing for multiple comparisons across all genes that are corre-
lated with the same receptor (fig. S3). The observation of variable 
gene-receptor correspondence is consistent with findings in hu-
mans, using both in vivo positron emission tomography (PET) and 
postmortem autoradiography (47, 48, 50–54).

For receptors pertaining to neuromodulatory systems, we ob-
serve significant correlations between density per neuron of the ad-
renergic α2 receptor with ADRA2A gene expression; serotonergic 
5HT1A receptor density and HTR1A gene expression; and musca-
rinic acetylcholine receptor M2 and CHRM2 gene expression. Nota-
bly, DRD1 gene expression barely fails to meet the threshold for a 
statistically significant correlation with dopamine D1 receptor den-
sity, after controlling for spatial autocorrelation (P = 0.05); similar-
ly, α1 receptor density and ADRA1A gene expression exhibit the 

second-highest value of correlation (Spearman’s r = 0.64), albeit 
barely failing to reach significance after accounting for spatial auto-
correlation (P = 0.05). For glutamate receptors, we observe signifi-
cant correlations between AMPA receptor density and GRIA1, 
GRIA3, and GRIA4 gene expression; kainate receptor density and 
GRIK1, GRIK2, and GRIK3 gene expression; NMDA receptor 
density and GRIN2B, GRIN2C, and GRIN3A gene expression. For 
GABA receptors, we observed that GABRA2, GABRA5, GABRB3, 
and GABRG1 exhibited significant correlations with both GABAA 
receptor density and GABAA∕BZ binding site density, with addi-
tional significant correlations for GABRA4, GABRA6, and GABRQ 
(fig. S2).

Notably, the correspondence between 5HT1A receptor density 
and HTR1A gene expression had also been observed in humans 
with both in vivo PET and ex vivo autoradiography, by multiple 
studies (47, 48, 52, 54), and even between human genes and ma-
caque receptors (40). Altogether, the overall level of correspondence 
between gene expression and receptor density is consistent with re-
cent findings in the human brain (47, 48, 50, 52, 53).

One potential reason why receptor density may not align per-
fectly with gene expression is that gene transcription occurs in the 
soma, whereas many receptors are expressed at the synapse, which 
may be far away, possibly even in a different brain area for neurons 
with long axons. To investigate this possibility, we correlate the re-
ceptor density of each region A, with the weighted average gene 
expression of the regions that A is directly structurally connected 
to, where the weights are the strengths of the connections from A 
to its neighbors (see Materials and Methods) (34). The rationale for 
this approach is that if receptors expressed in region A are the re-
sult of genes transcribed at the other end of long-range axons com-
ing from other regions, then the receptor’s density in A should be 
better predicted by considering the average of gene expression in 
A’s neighbors. However, our results rule out this possibility (fig. 
S4). No additional significant gene-receptor correlations emerge, 
and the only significant correlations are between GABRA6 gene 
expression and GABAA receptor density, with P = 0.06 for the cor-
relation between HTR1A gene expression and 5HT1A receptor den-
sity (fig. S4)—both of which were also significant in the original 
analysis.

Receptor expression can also vary depending on cell types. The 
relative prevalence of different cell types in each cortical region may 
therefore influence its profile of receptor expression. Chen et al. (16) 
provide a list of 23 transcriptomically derived cell types for the ma-
caque cortex, based on data-driven clustering of their gene expres-
sion data. They comprise 10 subclasses of excitatory (glutamatergic) 
neurons, 7 subclasses of GABA-ergic neurons, and 6 subclasses of 
nonneuronal cells. We therefore use these data to ask whether cell 
subclasses have preferential correspondence with specific receptors, 
across the macaque cortex. Five out of six nonneuronal cell sub-
classes [all except vascular leptomeningeal cells (VLMCs)] exhibit 
preferential spatial colocalization with serotonin receptors across 
cortical regions. For oligodendrocytes, the greatest regional associa-
tion is with the 5HT2A receptor. For oligodendrocyte precursor cells, 
endothelial cells, and especially microglia and astrocytes, the great-
est correspondence is with the 5HT1A receptor (fig. S5). We find that 
L34 and L345 excitatory neurons and PV interneurons have the 
highest correspondence across regions with the 5HT2A receptor (fig. 
S5), which is known to be prominently expressed in layer 5 pyrami-
dal neurons, but also found in excitatory neurons of layers 2 and 3 
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and parvalbumin-expressing interneurons (60, 61). Likewise, astro-
cytes express 5HT1A (62) and α1 receptors (63), which we found to be 
the first and second most-associated receptors for this cell class (fig. 
S5). Altogether, these results at the level of macroscopic brain areas 
are consistent with microscale evidence about the preferential ex-
pression of different receptors across cell types.

Laminar specificity of macaque 
gene-receptor correspondence
Different neuron types can be preferentially localized in specific corti-
cal layers. Therefore, we next seek to determine whether the imperfect 
gene-receptor correlations could be attributable to layer-specificity. 

Because Chen et al. (16) provide gene expression data for each corti-
cal layer, we can repeat our analysis of the regional correspondence 
between genes and receptors across the macaque cortex, but this 
time, using layer-specific gene expression data. Note that the ma-
caque receptor density maps from the work of Froudist-Walsh et al. 
(40) do not provide layer-specific information. Rather, a single value 
of receptor density per region is available for each receptor. Therefore, 
for this analysis, we do not compare gene layer 1 with receptor layer 
1, gene layer 2 with receptor layer 2, and so on. Rather, the same re-
gional pattern of receptor density (without layer specificity) is com-
pared against each layer-specific pattern of regional gene expression 
(figs. S6 to S11).

Fig. 2. Vertical translation: Correlations between receptor density and corresponding gene expression in the macaque cortex. Only a few neurotransmitter recep-
tors exhibit significant regional correlations with their corresponding gene across macaque cortical regions. Abscissa: regional receptor density from autoradiography 
(50). Ordinate: regional gene expression from stereo-seq (21). Each data point is a region of the Regional Mapping (RM) macaque cortical atlas. Indigo scatter plots indicate 
significant positive gene-receptor correlation (Spearman’s r, P < 0.05 against a null distribution of surrogate cortical maps with preserved spatial autocorrelation). Values 
are z-scored. See fig. S2 for results across the entire set of genes and receptors, and fig. S3 for results after adjustment for multiple comparisons.
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We find that the majority of gene-receptor pairs exhibit signifi-
cant region-by-region correlation across at least one layer: 42 out 
of 55 (76%). Of these 42 significant gene-receptor pairs, 32 (58% of 
the total) have significant correlations for two or more layers. Cru-
cially, the distribution is not uniform across layers, with deeper 
layers enjoying relatively higher proportion of significant correla-
tions, especially for glutamate receptors (Fig. 3D). Notably, differ-
ences also emerge among receptor types, with the proportion of 
(uncorrected) significant correlations ranging from 31.2% of all 
layer-wise gene-receptor pairs for GABA to 41.6% for receptors 
pertaining to neuromodulatory systems and 53.3% for glutamater-
gic receptors (a significantly higher proportion than for GABA: 
χ2 = 12.65; P < 0.001). Upon adjusting for multiple comparisons 
across six layers and across all genes that are matched with the 
same receptor, we find that differences between receptor systems 
are amplified (fig. S12): 42.2% of glutamatergic gene-receptor pairs 
remain significant, which is a significantly higher proportion than 
for neuromodulatory receptors (25%; χ2 = 4.02; P < 0.045) and 
GABA-ergic receptors (6.77%; χ2 = 51.98; P < 0.001). The propor-
tion of significant false discovery rate (FDR)–corrected gene-
receptor correlations for GABA receptors is also lower than that for 
neuromodulatory receptors (χ2 = 13.67; P < 0.001). These results 
show that gene-protein correspondence is both layer–dependent and 
variable across neurotransmitter systems, being most robust for 
glutamate.

One limitation of the previous analysis is that layer-specific 
data were only available for gene expression, but not for receptor 
density, because Froudist-Walsh et al. (40) did not provide layer-
specific receptor density for each macaque cortical region. How-
ever, we obtained layer-specific macaque receptor density for 

visual area V1 and for six subregions of the inferior parietal lobe 
(64), four of which (PF, PFG, PG, Opt) are also available in the 
database of layer-specific gene expression from (16). Note that 
no mapping to the RM atlas was required for this analysis, be-
cause both gene expression and receptor density data were avail-
able for each region in the original format. For each of these five 
regions (V1 and four IPL subregions), we can therefore expand 
on our previous layer-specific analysis in two complementary 
ways. First, we correlate the gene expression in each layer, against 
the corresponding receptor density in each layer, within each re-
gion (i.e., each layer is one data point). In line with our main 
analysis across cortical regions, we find that gene-receptor cor-
relations across cortical layers exhibit greater magnitude for glu-
tamate and neuromodulatory receptors than for GABA receptors, 
and they also appear greater for IPL subregions than V1 (fig. 
S13). Second, we compare the relative expression of all receptors 
in each layer against the relative expression of the corresponding 
genes in each layer (i.e., each data point is a gene-receptor pair). 
This analysis addresses the fact that neurons can be spatially ex-
tended across different layers of the same region. For example, 
deep-layer neurons may express genes whose corresponding re-
ceptor is found on distal tuft dendrites in layer 1. Notably, most 
significant FDR-corrected cross-layer correlations that we find 
are in V1, and they include both positive and negative correla-
tions, such that greater gene expression in some layers (e.g., L2 
and L5) corresponds to systematically lower receptor density in 
other layers (L4 and L1; fig. S14). Altogether, these layer-specific 
patterns of correspondences between genes and receptors show-
case the intertwined nature of cortical chemoarchitecture and 
laminar differentiation.

Fig. 3. Correspondence between macaque gene expression and macaque receptor expression across cortical layers and receptor types. (A) Significance of gene-
receptor correlations for GABA receptors. (B) Significance of gene-receptor correlations for glutamate receptors. (C) Significance of gene-receptor correlations for recep-
tors pertaining to neuromodulatory systems (acetylcholine, noradrenaline, serotonin, and dopamine). For (A) to (C), indigo cells indicate significant positive gene-receptor 
correspondence (P < 0.05 against a null distribution of surrogate cortical maps with preserved spatial autocorrelation); gray cells indicate no significance. Rows indicate 
cortical layers, and columns indicate gene-receptor pairs. (D) Summary of the proportion of significant correlations from (A) to (C), for each layer and each broad receptor 
type. See fig. S12 for results after adjustment for multiple comparisons.
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Macaque gene expression recapitulates 
microarchitectural features
We further assess whether our stereo-seq data allow us to recover 
gene-protein correlations that we should expect to observe, based 
on the literature. Notably, Fulcher et al. (44) reported high within-
species correspondence in the mouse between Pvalb gene expres-
sion and the density of neurons expressing parvalbumin (the protein 
that Pvalb codes for), as well as high correspondence between mouse 
Pvalb and Calb2, and human PVALB and CALB2 gene expression. 
In addition, Burt et al. (42) observed that macaque protein density 
of the calcium-binding proteins parvalbumin and calretinin from 
immunohistochemistry exhibits similar spatial patterns to the ex-
pression of human PVALB and CALB2 genes, which code for these 
proteins in humans. Together, these previous results suggest that 
we should expect to observe similar regional patterns for macaque 
PVALB gene expression and parvalbumin protein density, and for 
macaque CALB2 expression and calretinin protein density. Observ-
ing such a correspondence would corroborate the quality of the 
stereo-seq gene expression data.

We show that macaque PVALB gene expression from stereo-seq 
is significantly correlated (r = 0.37, P < 0.001) with an independent 
measure of density of parvalbumin-immunoreactive interneurons 
from immunohistochemistry (65–68) assembled and made avail-
able by Burt et al. (42) (Fig. 4A). Likewise, macaque CALB2 gene 
expression from Stereo-seq is significantly spatially correlated with 
density of calretinin-immunoreactive interneurons in the macaque 
cortex (42) (r = 0.65, P < 0.001; Fig. 4A). We replicate these re-
sults using the relative prevalence of calretinin-immunoreactive 
and parvalbumin-immunoreactive neurons across a subset of vi-
sual, auditory, and somatosensory regions of the macaque from 
(68), one of the original studies aggregated by Burt and colleagues 
(fig. S15).

In addition, Fulcher et al. (44) reported that both humans and 
mice exhibit significant spatial correspondence between in vivo in-
tracortical myelination [estimated from the ratio of T1-weighted 
to T2-weighted magnetic resonance imaging (MRI) signal] and 
expression of the key myelin-related genes MBP/Mbp and MOBP/
Mobp, as well as PVALB/Pvalb and GRIN3A/Grin3a. Here, we dem-
onstrate that each of these relationships is also observed in the 
macaque: We find significant positive region-by-region correlations 
between macaque intracortical myelination (T1w:T2w ratio) and 
macaque cortical expression of MOBP (r = 0.70, P = 0.01), MBP 
(r = 0.53, P = 0.043), and PVALB (r = 0.68, P = 0.01), as well as a 
significant negative association between T1w:T2w ratio and GRIN3A 
gene expression (r = −0.66, P = 0.025) (Fig. 4B)—precisely as re-
ported in (69). In addition to demonstrating a close correspondence 
across cortical regions between ex vivo expression of myelin-related 
genes and an in vivo marker of cortical myelination in the macaque 
brain (70–72), these results also demonstrate close alignment of our 
results with two different mammalian species: human and mouse. 
Collectively, despite moderate alignment across cortical regions in 
the specific case of gene-receptor correspondence, these results 
indicate that macaque stereo-seq gene expression can recapitulate 
many other in vivo and ex vivo features of macaque cortical micro-
architecture.

Cross-species correspondence of gene expression
Having assessed the potential of macaque gene expression for vertical 
translation (within-species), we next proceed to assess the translational 

potential of macaque gene expression to human (horizontal transla-
tion). We compare macaque regional patterns of gene expression 
from stereo-seq, against regional patterns of human gene expres-
sion obtained from the AHBA microarray data (15). In addition to 
the list of genes coding for receptor subunits already included in 
the previous analyses (47,  48), we also include the list of brain-
related genes examined by Fulcher et al.’s (44) investigation of in-
terspecies correspondence of gene expression between mouse and 
human. This list includes not only genes coding for neurotransmit-
ter receptors but also neuropeptide receptors, interneuron cell-type 
markers (parvalbumin, somatostatin, calbindin, and vasoactive in-
testinal polypeptide), and the four most abundant mRNAs in my-
elin (MBP, FTH1, PLEKHB1, and MOBP) (44). For all analyses, we 
only consider genes that (i) have a macaque ortholog and (ii) are 
available in both the human and macaque datasets after accounting 
for all preprocessing criteria, such as intensity filtering, yielding a 
total of 99 genes.

We find that 53 of 99 (53.5%) genes considered exhibit significant 
region-to-region correlation between humans and macaques, after 

Fig. 4. Macaque gene expression recapitulates microarchitectural features. 
(A) Region-by-region correspondence of macaque PVALB and CALB2 gene expres-
sion, with the immunohistochemically derived regional density of the proteins 
that these genes code for: parvalbumin and calretinin, respectively. (B) Region-by-
region correspondence of macaque gene expression with intracortical myelination 
from in vivo T1w:T2w MRI ratio. Indigo scatter plots indicate significant region-by-
region correspondence (Spearman’s r, P < 0.05 against a null distribution of surro-
gate cortical maps with preserved spatial autocorrelation). Each data point is a 
region of the RM macaque cortical atlas. Values are z-scored.
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accounting for spatial autocorrelation. A representative sample of 
cross-species gene correlations pertaining to receptors is shown in 
Fig. 5; the full set is shown in figs. S16 and S17. In other words, we 
find that interspecies correspondence of gene expression for genes 
pertaining to cell-type markers and receptor subunits is greater than 
the correspondence between macaque gene expression and density 
of the corresponding receptors, as shown in the previous section. 
However, the proportion of significant interspecies correlations of 
gene expression (53%) is comparable to the proportion of macaque 
gene-receptor pairs having more than one significant correlation across 
cortical layers (58%).

Is interspecies gene expression correspondence uniform across 
the brain, or is it regionally heterogeneous? Complementary to 
correlating expression of each gene across regions (i.e., each data 
point being a cortical region), we can also consider the correlation 
of expression of different genes at each cortical region (i.e., with 
data points being genes) (Fig. 6A). We find that the regional inter-
species correlation of genes is significantly greater in the unimodal 
than in the transmodal regions of the cortex (Fig. 6A). These 
systematic differences between gene expression in the two species 
are reflected in regionally heterogeneous phylogenetic divergence 

between humans and NHPs, including macaques (73–78). Cortical 
regions that exhibit the lowest correspondence of gene expression 
between macaque and human are also the regions that have under-
gone the greatest cortical expansion between the two species, as 
quantified in a recent report of human-macaque cortical expan-
sion by Xu et  al. (77). Specifically, there is a significant negative 
correlation between the two regional patterns: Spearman’s r = −0.35, 
P = 0.002 (Fig. 6B).

We can also adopt the same approach to estimate region-by-
region correspondence between gene expression and protein density 
in macaque cortex. In addition to receptors, we also consider intra-
cortical myelin from T1w:T2w ratio [matched with MBP, MOBP, 
PLEKHB1, and FTH1 genes as per Fulcher et al. (44); calretinin 
(matched with CALB2) and parvalbumin (matched with PVALB)]. 
This cortical map shows the greatest gene-protein correspondence 
in unimodal (visual and somatomotor) regions (fig. S18), and it con-
verges with the map of regional interspecies correspondence of gene 
expression (Spearman’s r = 0.43, P < 0.001; fig. S19). Thus, both 
horizontal and vertical translation of macaque gene expression ex-
hibit systematic regional heterogeneity, being most pronounced in 
unimodal cortices.

Fig. 5. Horizontal translation: Regional correspondence between the expression of the main available brain-relevant genes in humans (from microarray) and 
macaques (from stereo-seq). The majority of macaque genes exhibit significant regional correlation with the corresponding human ortholog genes. Indigo scatter plots 
indicate significant human-macaque correspondence (Spearman’s r, P < 0.05 against a null distribution of surrogate cortical maps with preserved spatial autocorrelation). 
Each data point is a region of the Regional Mapping (RM) macaque cortical atlas. Values are z-scored.
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Correspondence between macroscopic cortical gradients
So far, we considered all correspondences on an individual gene and 
protein basis. However, a rich literature posits that much of the region-
by-region variation in gene expression follows a small set of dominant 
macroscale patterns or “gradients,” often identified by applying di-
mensionality reduction techniques such as principal components 
analysis (PCA) (15, 42, 44, 79). We therefore ask whether the results 
that we observed so far (moderate correspondence between gene ex-
pression and protein density in the macaque; greater correspondence 
between gene expression in the macaque and gene expression in hu-
man) can also be observed at the level of multivariate gradients.

Starting from macaque gene PC1 (the regional pattern that cap-
tures the most variance in the region-by-gene matrix, as obtained 
from PCA), we show that it exhibits a significant region-by-region 
correlation with macaque in vivo intracortical myelination quanti-
fied from T1w:T2w MRI ratio (r = −0.67, P < 0.01; Fig. 7A). This is 
what we should expect, based on previous results of correlations be-
tween gene PC1 and T1w:T2w ratio in both humans and mice 
(42, 44). We replicate this result using a different dataset of macaque 
intracortical myelination for a subset of regions (fig. S20). These 
results provide further biological validation for our gene expres-
sion data.

Burt et al. (42) had also shown that in the macaque, T1w:T2w 
ratio is negatively correlated with the number of dendritic tree 
spines of layer 3 pyramidal neurons. Taking together this finding 
and the finding that T1w:T2w ratio is negatively correlated with 
gene PC1 across species, we should expect a positive correlation be-
tween macaque gene PC1 and macaque regional L3 dendritic spine 
count. However, this relationship has not been demonstrated before. 
This is indeed what we find: Macaque gene PC1 is positively corre-
lated across regions with the regional dendritic spine count, r = 0.61, 
P = 0.02 (Fig. 7B). Together, these correspondences of macaque 
gene PC1 with independent in vivo and ex vivo measures in the ma-
caque brain provide convergent corroboration for the validity of the 
gene expression data used here.

However, in line with the moderate pairwise correspondence be-
tween macaque genes and receptors that we observed, the macaque 
gene PC1 narrowly fails to exhibit significant region-by-region cor-
relation with the principal component of macaque receptor density 
from autoradiography (receptor PC1), once spatial autocorrelation 
is taken into account (Spearman’s r = 0.53, P = 0.08; Fig. 7C). In 
contrast, we find a strong significant region-by-region correlation 
between macaque gene PC1 and human gene PC1—despite being 
obtained from different techniques, namely, stereo-seq for the ma-
caque and microarray for the human data (r = 0.74, P < 0.001; Fig. 
7D). This result corroborates the significance of correlations be-
tween numerous individual genes across the two species and pro-
vides further evidence for interspecies correspondence of gene 
expression between macaque and human.

Replication with macaque RNA-seq gene expression
Although the stereo-seq database of macaque cortical gene expres-
sion is a valuable resource, one potential limitation is that stereo-seq 
has relatively low gene coverage from single cells (16). Therefore, to 
ensure the robustness of our results, we replicate them using an in-
dependent dataset of macaque region-specific gene expression from 
bulk RNA-seq (17). These data comprise a smaller set of 18 genes 
coding for neurotransmitter receptors, transporters, and synthesis. 
Among these, 17 are also present in the stereo-seq dataset from (16) 
(see Materials and Methods). We find that 11 of 17 genes (64%) ex-
hibit significant region-by-region correlations across macaque cor-
tex between stereo-seq and bulk RNA-seq, including cholinergic 
CHRNA1, dopaminergic DRD2, glutamatergic GRIA4, GABA-ergic 
GABRQ, and serotonergic HTR2C (fig. S21).

Of the 18 macaque genes shared by Bo et  al. (17), 11 are also 
available in our AHBA microarray dataset. Replicating our stereo-
seq results for macaque-human correspondence, we find several 
significant region-by-region correlations between macaque bulk RNA-
seq gene expression and human microarray gene expression (fig. 
S22). Notably, a number of macaque bulk-RNA genes exhibited 
significant correlations both with macaque stereo-seq and with hu-
man microarray gene expression: DDC, GLRA2, GRIA4, HTR2C, 
and PNMT.

We also compare macaque RNA-seq gene expression against ma-
caque receptor density. Because only a small number of macaque 
genes are available from Bo et  al. (17), we compare these genes 
against all available macaque receptors pertaining to the same neu-
rotransmitter systems (see Materials and Methods). Altogether, we 
find that 12 of 30 genes exhibit statistically significant cortical cor-
relations with receptors pertaining to the same neurotransmitter 
system, including correlations between AMPA receptor and GRIA4 

Fig. 6. Regional correlation between human and macaque patterns of cortical 
gene expression recapitulates cortical expansion. (A) Intensity of color of each 
region indicates the magnitude of Spearman’s correlation between human microar-
ray and macaque stereo-seq gene expression for that region, across genes. Data are 
re-parcellated from the human version of the Regional Mapping (RM) atlas to the 
Schaefer-400 parcellation. The interspecies correlation of regional gene expression 
is significantly higher in unimodal than transmodal regions; unimodal mean = 0.16; 
transmodal mean = 0.11; t398 = 5.20, Cohen’s d = 0.52, P < 0.001 from independent-
samples t test. (B) The cortical pattern of regional interspecies correlations of gene 
expression is significantly negatively correlated with the spatial pattern of cortical 
expansion from macaque to human from (90) (each data point is a region of the 
Schaefer cortical atlas); Spearman’s r = −0.35, P = 0.002 after accounting for spatial 
autocorrelation.
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gene expression, between GABRQ gene expression and GABAA∕BZ 
receptor density, and between α2 receptor and ADRA2C gene ex-
pression, providing validation for our main results from stereo-seq 
(fig. S23; see fig. S24 for FDR-corrected results). At the multivariate 
level, we find that macaque gene PC1 from bulk RNA-seq is signifi-
cantly correlated with macaque gene PC1 from stereo-seq, and also 
with macaque receptor PC1 (fig. S25). Overall, the smaller list of 
macaque cortical gene expression maps provided by Bo et al. (17) 
produces similar patterns of spatial correspondence to those ob-
served from macaque stereo-seq (16).

Replication with human RNA-seq gene expression
We also replicate results using an alternative measurement of hu-
man gene expression, RNA-seq, available in two of six AHBA do-
nors (15). Patterns of region-by-region correspondence between 
human RNA-seq gene expression and macaque stereo-seq gene 
expression are consistent with our previous results (where hu-
man gene expression was obtained from microarray), including 
significant correlations between human and macaque PVALB, SST, 
CALB2, GRIA1, GRIK2, and HTR1A (figs. S26 and S27). Univariate 
correspondences are also recapitulated at the multivariate level, 
where we replicate the significant correlation between macaque 
stereo-seq gene PC1 and human gene PC1 obtained from RNA-seq: 
Human gene PC1 from RNA-seq is significantly correlated both 
with macaque gene PC1 from stereo-seq and with macaque gene 
PC1 from RNA-seq (fig. S28). In other words, not only is macaque 
gene PC1 consistent across stereo-seq and bulk RNA-seq, but we 
also find that macaque gene PC1 and human gene PC1 are signifi-
cantly correlated, regardless of which modality is used to measure 

macaque gene expression (stereo-seq or bulk RNA-seq) and regard-
less of which modality is used for human gene expression (microar-
ray or RNA-seq).

Last, the pattern of interspecies correlation of each region’s gene 
expression, which we obtained by comparing macaque stereo-seq 
against human microarray data, is also recapitulated when human 
RNA-seq data are used instead (fig. S29). Collectively, these checks 
demonstrate that our results are robust across different datasets and 
measurements (human microarray and RNA-seq; macaque stereo-
seq and RNA-seq).

DISCUSSION
Comprehensive gene expression in the macaque holds promise as a 
means of learning about correspondence with the human brain and 
to expand the value of the macaque as a model organism, including 
for gene therapy (12, 13).

Within-species correspondence between macaque gene expres-
sion and receptor density is generally moderate, and variable across 
receptor-gene combinations. This result is in line with the modest 
correspondence between mRNA and protein abundance previously 
reported in the literature (80–83), including in human brain tissue 
(84). Our results validate recent results pertaining to gene-receptor 
correspondence in the human brain. These studies showed that few 
receptors (whether measured from in vivo PET or postmortem 
autoradiography) exhibit significant regional covariation with ex-
pression of the corresponding genes from human microarray data 
(47,  48,  50,  52,  53). Nonetheless, we do find that some specific 
gene-protein pairs exhibit robust correlations across regions in the 

Fig. 7. Horizontal and vertical translation of macaque cortical gradients. (A) Macaque gene PC1 is significantly correlated with macaque intracortical myelination 
(quantified from T1w:T2w ratio). (B) Macaque gene PC1 is significantly correlated with the number of dendritic spines of layer 3 pyramidal neurons. (C) Macaque gene PC1 
does not correlate with macaque receptor PC1 after accounting for the role of spatial autocorrelation. (D) Macaque gene PC1 is significantly spatially correlated with hu-
man gene PC1. Each data point is a region of the RM macaque cortical atlas. Indigo scatter plots indicate significant regional correlation (Spearman’s r, P < 0.05 against a 
null distribution of surrogate cortical maps with preserved spatial autocorrelation). Values are z-scored.
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macaque cortex. These include parvalbumin-PVALB and calretinin-
CALB2 correspondence, consistent with the literature in both 
human and mouse (42, 44). Likewise, we found significant region-
by-region correlation between HTR1A gene expression and 5HT1A 
receptor density in the macaque. In the human, Hansen et al. (47) 
showed that the HTR1A gene was the only one to show significant 
correlation with expression of the corresponding receptor (5HT1A) 
across both PET and autoradiography. Correspondence between 
HTR1A mRNA and 5HT1A receptor density has been reported in 
humans by multiple studies (48, 52, 54, 85, 86). The present results 
corroborate the results obtained in (47, 48, 50) in a different species 
and with different modalities. They also validate the recent result of 
Froudist-Walsh et al. (40), who reported a significant correlation be-
tween human HTR1A gene expression and macaque 5HT1A receptor 
density. Likewise, Hansen et al. (47) and Murgaš et al. (48) reported 
significant correlation between ADRA2A and α2 in humans, and 
Froudist-Walsh et al. (40) reported significant correlation between 
macaque α2 density and human ADRA2A gene expression. Togeth-
er, these previous results suggest that ADRA2A expression and α2 
density might also be correlated in the macaque, which is precisely 
what we found. Although we observed limited gene-receptor corre-
spondence in the macaque when considering gene expression ag-
gregated across cortical layers, 76% of gene-receptor pairs exhibit a 
significant correlation for at least one cortical layer. This finding 
suggests that the limited gene-receptor correspondence reported in 
the human literature (47, 48) may partly be due to the aggregation 
of gene expression across cortical layers. Thanks to a number of 
regions for which both gene expression and receptor density are 
available in each cortical layer, we uncovered complex gene-receptor 
relationships both across layers of the same region, and between 
different cortical layers. These laminar relationships further vary 
by regional identity and neurotransmitter system, highlighting 
the need for more comprehensive datasets of layer-specific recep-
tor density.

More broadly, there are numerous biological reasons why expres-
sion of a gene may diverge from density of the corresponding pro-
tein (87). First, total gene expression levels ignore mRNA stability 
from posttranscriptional regulation, which affects protein abun-
dance, as RNA levels depend on both transcription and decay rates 
(88). Second, protein abundance is influenced by variations in pro-
tein stability, half-life, and the activity of transport machinery that 
determines protein localization within the cell (82, 89, 90). Rates of 
degradation in postmortem tissue can vary widely for mRNA and 
proteins, spanning several orders of magnitude: minutes for mRNA 
and hours to years for proteins (50, 80, 83, 87). Third, studies in yeast 
have demonstrated that translation rate also alters protein levels, 
in turn affecting the correlation between mRNA expression and 
protein abundance (91). Fourth, the protein itself may be transported 
far from the coding mRNA, resulting in a spatial discrepancy be-
tween protein levels, and gene expression quantified from mRNA 
abundance. For example, this could be the case for presynaptic re-
ceptors located at the end of long axonal projections. However, we 
largely ruled out this possibility by showing that receptor density of 
a region does not correlate with the weighted average gene expres-
sion of that region’s structurally connected neighbors.

Altogether, any of these biological processes may contribute to 
the observed difference in levels of mRNA expression and protein 
density in the macaque cortex, including both calcium-binding 
proteins and receptors. However, neurotransmitter receptors are 

protein complexes bound in the cell membrane. Therefore, there are 
additional receptor-specific biological processes that may explain 
why gene-receptor correspondence was generally not as good as the 
correspondence between gene expression and parvalbumin and cal-
retinin. This is because there are multiple steps between synthesis of 
a single protein and that protein forming part of a multimeric struc-
ture embedded in the cellular membrane. For example, any formed 
receptors that do not bind to the membrane (such as receptors local-
ized to intracellular compartments) will fail to be detected from au-
toradiography. In addition, posttranscriptional and posttranslational 
modifications (e.g., receptor assembly and trafficking) can further 
contribute to decoupling mRNA expression from the final receptor 
prevalence. Last, gene-receptor correspondence will also be influ-
enced by variations in subunit composition of a receptor. Changes in 
subunit composition are to be expected, because they play an inte-
gral role in synaptic function and plasticity (92, 93).

The correspondence between gene expression and protein den-
sity may also vary depending on the prevalence of different cell 
types (94). We find that cell types exhibit variable spatial associa-
tions with different receptors across regions of macaque cortex. In 
particular, all but one subtype of nonneuronal cells are preferential-
ly spatially associated with serotonin receptors. Notably, there is 
mounting evidence that nonneuronal cells such as astrocytes, oligo-
dendrocytes, and microglia are implicated in depression and other 
psychiatric disorders through their roles in monoamine reuptake 
and synaptic function (95, 96), demyelination (97, 98), and inflam-
mation (99, 100), respectively. The 5HT1A and 5HT2A receptors are 
both prominent targets for pharmacological interventions for mood 
disorders (101–103). The present results of an association between 
serotonin 1A and 2A receptors and support cells in macaque cor-
roborate their respective involvement in mood disorders in the lit-
erature, which may merit further investigation in humans. In this 
context, it is promising that we found both robust within-species 
correspondence between 5HT1A receptor density and HTR1A gene 
expression, and robust correspondence of cortical HTR1A expres-
sion across macaque and human.

How the spatial transcriptomes of the macaque and human align 
across the cortical sheet is an important benchmark for the transla-
tional potential of this model organism. We find that more than 
half (53%) of genes included in the present study exhibit significant 
region-by-region correlation between human and macaque. Our 
finding of conserved gene expression across homologous mac-
roscale regions of primate cortex complements the findings of 
Krienen et al. (104), who reported that cross-species correlations of 
RNA expression across homologous interneuron classes were more 
consistent among primates than in the primate–mouse or primate–
ferret comparisons. We find that both horizontal and vertical trans-
lation of macaque gene expression are regionally heterogeneous but 
highly systematic. Namely, interspecies correspondence of gene ex-
pression is greatest in the unimodal cortex and lowest in the trans-
modal cortex. This result is consistent with Beauchamp et al. (105), 
who reported that the similarity of gene expression patterns be-
tween human and mouse is higher in sensorimotor than in associa-
tion cortices. This pattern of genetic divergence may then drive 
divergence in cell types, circuits, and macroscopic features of corti-
cal organization. For example, we find that regions in which human 
gene expression diverges most from macaque also show the greatest 
expansion in gray matter, as reported by Xu et al. (77). In addition, 
regions where there is better correspondence between human and 
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macaque gene expression (greater horizontal translation) also show 
better gene-protein correspondence within the macaque (greater 
vertical translation). Thus, unimodal regions exhibit tighter tether-
ing of protein density to gene expression within the same species, 
and more conserved gene expression across species, converging 
with evidence for more limited evolutionary divergence in unimod-
al cortices (73–78, 106). This regional heterogeneity bears an impor-
tant implication for future spatial transcriptomics studies; namely, 
confidence in translational inferences depends on where in the 
brain the transcriptome is sampled. Therefore, for horizontal trans-
lation from macaque to human, it is desirable that transcriptomic 
sampling should span a variety of brain regions (ideally, whole 
brain) and be accompanied by precise three-dimensional spatial lo-
cations, including laminar information.

Correspondence between human and macaque gene expression 
is also heterogeneous in terms of specific genes. Once again, how-
ever, this heterogeneity is not random. In contrast, several genes 
displaying high interspecies correspondence between human and 
macaque are also known to be conserved between humans and 
mice. Previous work identified a number of brain-related genes that 
exhibit strong interspecies consistency between human and mouse, 
using each species’ T1w:T2w ratio map to define a common spatial 
reference for interspecies comparison. These genes include the in-
terneuron markers PVALB/Pvalb and CALB2/Calb2; the oxytocin 
receptor gene OXTR/Oxtr; the glutamate receptor genes GRIN3A/
Grin3a, GRIK1/Grik1, GRIK2/Grik2, and GRIK4/Grik4; the myelin 
marker genes MOBP/Mobp and MBP/Mbp; and the serotonin 
HTR1A/Htr1a gene (44). Here, we find that except for GRIK4 and 
MBP, all these genes exhibit significant correlations between human 
microarray and macaque stereo-seq data, with most (including 
GRIK4) also correlating with human RNA-seq data. Note that here 
we used direct region-to-region correlation between human and 
macaque cortical patterns, rather than the indirect approach of 
Fulcher et al. (44), thanks to the availability of the same parcellation 
in both species. Together with the results of Fulcher et al. (44), our 
results further establish that many genes pertaining to microstruc-
ture and receptors exhibit robust regional similarities across mam-
malian species, even when measured through diverse techniques 
(in situ hybridization in the mouse, microarray and RNA-seq in hu-
mans, and stereo-seq and RNA-seq in macaques).

This comparative work integrates multiple unique datasets, en-
tailing inherent methodological limitations for each dataset and for 
comparisons between datasets. Specifically, limitations include the 
following: (i) macaque gene and receptor expression come from dif-
ferent animals; (ii) data are postmortem rather than in vivo, and the 
consequent small number of animals and humans that provided 
data; (iii) gene expression was estimated from different transcrip-
tomics techniques in different species (microarray and RNA-seq for 
humans; stereo-seq and RNA-seq for macaques); (iv) limited corti-
cal coverage for the macaque gene expression data (left hemisphere 
only); (v) limited cortical coverage for the autoradiography data (no 
temporal lobe); and (vi) restriction to cortical sampling.

In light of these limitations, we instituted several checks. As ex-
pected based on analogous correspondences in both human and 
mouse (42,  44), we showed that the principal component of ma-
caque gene expression correlates with macaque intracortical my-
elination from T1w:T2w MRI ratio (Fig. 7A), as well as dendritic 
spine density (Fig. 7B). Macaque gene PC1 also correlated with hu-
man gene PC1, regardless of how gene expression was quantified in 

either species, whereas the match with macaque receptor PC1 is 
imperfect—recapitulating in a multivariate fashion the results 
observed for individual genes and receptors. We also showed that 
macaque PVALB gene expression correlates with human PVALB 
expression. This interspecies correspondence corroborates the strong 
interspecies correspondence between human PVALB and mouse 
Pvalb (44)). Using an independent dataset, we further showed that 
macaque PVALB also correlates with parvalbumin protein density 
in the macaque. Together with the correspondence between HTR1A 
and 5HT1A, this evidence indicates that when there is reason from 
the literature to expect a correspondence between protein density 
and gene expression, it is also observed in our data. In particular, the 
correspondence between HTR1A and 5HT1A was observed in both 
supragranular (L2 and L3) and infragranular (L5 and L6) layers of 
macaque cortex, consistent with human findings (47). This is note-
worthy because our own layer-wise data were for the gene expres-
sion, not for the receptor density, whereas Hansen et al. (47) used 
layer-wise information about receptor density, but not about gene 
expression. Notably, 5HT1A receptors are expressed more promi-
nently near the soma (including the axon initial segment), than in 
the apical dendrite (107), which may provide a neuroanatomical ex-
planation for their higher correlation in layers 2, 3, and 5. In con-
trast, the high glutamatergic gene-receptor correlations for layer 
4 may occur because L4 neurons do not have big dendritic trees (in 
particular, they do not have apical dendrites). L2/3 and L5 pyrami-
dal cells have broad dendritic trees with apical dendrites reaching up 
to L1 and, therefore, can be expected to have many receptors far 
from the soma. Last, to ensure robustness and mitigate the limita-
tions of stereo-seq such as low gene coverage from single cells, we 
replicated our results using a bulk RNA-seq macaque gene expres-
sion dataset, different protein measurements, and different human 
gene expression data (bulk RNA-seq instead of microarray).

As a final limitation, the datasets used here were each originally 
provided according to different parcellation schemes and different 
granularity of sampling. To make all data comparable, we opted to 
use the canonical RM parcellation of the macaque cortex devised by 
Kötter and Wanke (55, 56, 108). Tract-tracing and diffusion tractog-
raphy for this atlas have already been integrated into a high-quality 
structural connectome (109). A human version of this parcellation 
has likewise been made available, based on functional/cytoarchitec-
tonic landmark-based registration (57, 110). Crucially, the RM atlas 
was devised with the explicit goal of resolving conflicts between 
different parcellations in humans and other primate species, by 
capturing the most consistent cytoarchitectonic, topographic, or 
functionally defined regions that appear across primate species 
(55,  57). These considerations make the RM atlas especially well 
suited for our goal of translating between datasets provided in dif-
ferent parcellations. However, alternative macaque atlases exist 
(111), and cross-species brain mapping is a rapidly evolving field 
(7, 74, 76–78). Different parcellation approaches (e.g., based on dif-
ferent architectonic features or different imaging modalities) may 
not always coincide about the exact correspondence between spe-
cific cortical locations, especially for densely sampled data such as 
functional and structural MRI (7). Whereas here we have used a 
common parcellation to compare different data modalities within 
macaque and between macaque and human while keeping regional 
identity fixed, future efforts may take the opposite approach. On one 
hand, combining some of the recently released datasets about 
different macaque architectural features is bound to yield richer 
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parcellations of the macaque brain (7). On the other hand, the avail-
ability of gene expression datasets in both humans and macaques 
may provide the means to enhance existing characterizations of cor-
tical alignment between the two species based on similarity of gene 
expression, as recently done between human and mouse (105).

Nonetheless, despite the limitations that come with needing to 
map each original dataset onto a common parcellation, we are reas-
sured that this step has not unduly influenced our results. Our find-
ings are highly consistent with the literature in other species (e.g., 
correspondence of T1w:T2w ratio with myelin-related genes and 
PVALB, GRIN3A, and gene PC1; correspondence of gene PC1 across 
species, which we confirmed with different gene expression datasets 
for both human and macaque PVALB-parvalbumin and CALB2-
calretining correspondence; and correspondence between HTR1A 
and 5HT1A), suggesting that the quality of our mapping of the differ-
ent datasets into a common atlas is sufficient to identify a significant 
correspondence, where one is expected. Note also that we assessed 
the statistical significance of each correlation against null distribu-
tions of maps with preserved spatial autocorrelation, ensuring that 
our results are not driven by the role of spatial symmetry or granu-
larity of the data (58). Last, the RM atlas is the parcellation scheme 
used by the popular TheVirtualBrain platform for multimodal 
data sharing and computational modeling (109, 112, 113), enabling 
smooth integration of macaque gene and receptor expression data 
with other available data modalities and brain modeling workflows. 
In summary, we find moderate within-species gene-receptor corre-
spondence in the macaque cortex, which is improved by taking into 
account layer specificity. In contrast, there is better interspecies cor-
respondence for many genes underlying fundamental aspects of 
brain organization, such as cell-type markers, receptor subunits, and 
myelination. This interspecies correspondence of gene expression 
exhibits systematic regional heterogeneity, giving rise to a cortical 
pattern of interspecies divergence that recapitulates the interspecies 
divergence in cortical morphometry. Throughout, our results dem-
onstrate excellent concordance with findings from the translational 
neuroscience literature in other organisms (similarity of gene ex-
pression between human and mouse; limited gene-receptor corre-
spondence in humans) and also using alternative techniques such as 
ex vivo immunohistochemistry and in vivo T1w:T2w MRI contrast. 
Together, the present results showcase both the potential and limita-
tions of macaque spatial transcriptomics as an engine of translation-
al discovery within and across species.

MATERIALS AND METHODS
Macaque cortical gene expression from stereo-seq
We used cortex-wide macaque gene expression data recently 
made available by Chen et al. (16), who combined single-nucleus 
RNA-seq (snRNA-seq) with high-resolution, large–field of view 
spatial transcriptomics from stereo-seq (36). Specifically, the au-
thors made available (https://macaque.digital-brain.cn/spatial-omics) 
postmortem gene expression data covering 143 regions of the left 
cortical hemisphere of one 6-year-old male cynomolgus macaque 
(M. fascicularis). We refer the reader to the work of Chen et al. (16) 
for details. The animal protocol was approved by the Biomedical Re-
search Ethics Committee of CAS Center for Excellence in Brain Sci-
ence and Intelligence Technology, Chinese Academy of Sciences 
(ION-2019011). Animal care complied with the guideline of this 
committee (16).

Stereo-seq is a DNA nanoball (DNB) barcoded solid-phase RNA 
capture method (36). It involves reverse transcription of RNAs re-
leased from frozen tissue sections fixated onto the stereo-seq chip, 
and subsequent PCR amplification. The resulting “amplified-barcoded 
complementary DNA (cDNA) is used as template for library prepara-
tion and sequenced” to obtain high-resolution spatially resolved tran-
scriptomics (36).

Briefly, Chen et al. (16) obtained 119 coronal sections at 500-μm 
spacing, covering the entire cortex of the left hemisphere, which were 
used for stereo-seq transcriptomics. Adjacent 50-μm-thick sections 
were also acquired for regional microdissection and snRNA-seq 
analysis, as well as 10-μm sections adjacent to each stereo-seq sec-
tion, which were used for the anatomical parcellation of brain re-
gions via immunostaining (16). As reported in (16), for each coronal 
section, the cortical region and layer parcellation were manually de-
lineated on stereo-seq data background, based on cytoarchitectural 
pattern (e.g., cell density and cell size) revealed by total mRNA 
expression, nucleic acid staining, and NeuN staining of adjacent sections. 
Each stereo-seq section was stained with a dye specific to nucleic acid 
and with concanavalin A (ConA). ConA is a fluorescence-labeled 
lectin that stains the membranes of cells, so that the boundaries be-
tween cells are easier to distinguish and manually mark than using 
nucleic acid staining images alone. On the basis of ConA and nucleic 
acid staining, the authors then applied an automatic segmentation 
tool to identify single cells. After automatically registering nucleic 
acid staining images into mRNA coordinate space based on periodi-
cal track lines preengraved in the stereo-seq chip plane, cells in 
nucleic acid staining images were automatically segmented through 
a deep learning model trained using annotations by ConA staining. 
A total of 266,310 segmented cortical cells per section were obtained, 
with an average of 819 unique molecular identifiers and 458 genes 
per cell. Although the number of genes captured per cell remains 
much lower than that obtained by conventional snRNA-seq meth-
ods, Chen et al. (16) note that the average number of genes per cell 
was much higher than that in background (1.5 ± 0.9 genes per bin), 
and that this limitation was partially circumvented by using snRNA-
seq data to assist cell-type identification (see below). The same au-
thors further confirmed the reproducibility of their results by gene 
profiles and cell compositions mapped in sections of similar coronal 
coordinates from three monkeys (16).

To obtain gene expression levels, the signal of each gene in all 
pixels that fell within the segmentation boundaries of the cells was 
summarized and merged with the location information matrix. The 
percentage of mitochondrial genes (percent.mt) was calculated 
with the function “PercentageFeatureSet” (using genes ND6, COX3, 
COX1, ND5, ND4, ND2, ND4L, ATP8, CYTB, COX2, ND3, ATP6, 
and ND1). Cells with less than 100 features or percent.mt larger than 
15% were discarded. Data were then normalized using the function 
“SCTransform” with the parameter vars.to.regress  =  “percent.mt.” 
This step was performed to mitigate potential batch effects resulting 
from variations in single-cell sequencing depth within and across 
sections of the stereo-seq map. These normalized gene expression 
data are made available at https://macaque.digital-brain.cn/spatial-
omics for 143 cortical regions of the left hemisphere, including 
prefrontal, frontal, cingulate, somatosensory, insular, auditory, tem-
poral, parietal, occipital, and piriform areas. On the data-sharing 
portal, separate normalized gene expression data are made available 
for each region and for each of its cortical layers. Except for the 
layer-specific analyses, we use the region-level aggregated data. To 
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make the gene expression comparable across our datasets, the com-
bined gene expression across layers was manually mapped onto the 
cortical regions of the RM macaque atlas of Kötter and Wanke (55), 
mirroring data between hemispheres.

Chen et  al. (16) also performed cell-type classification using 
snRNA-seq data for 1,493,240 cells from 143 regions of the entire 
cerebral cortex of two macaques. Dimensionality reduction and 
clustering of this snRNA-seq dataset led to the identification of 264 
cell clusters, which were further grouped into 23 cell subclasses be-
longing to the three well-known classes of brain cells: glutamatergic 
neurons (with 10 subclasses), GABA-ergic neurons (with 7 subclass-
es), and nonneuronal cells (6 subclasses). The 10 glutamatergic neu-
ron subclasses were annotated by their layer preferences (L for layer: 
L2, L2/3, L2/3/4, L3/4, L3/4/5, L4, L4/5, L4/5/6, L5/6, and L6). The 
seven GABAergic neuron subclasses were divided into chandelier 
cells (CHC) and cells preferentially expressing lysosome-associated 
membrane protein 5 (labeled LAMP5), vasoactive intestinal peptide 
(VIP), reelin (RELN), VIP and reelin (VIP-RELN), parvalbumin 
(PV), and somatostatin (SST). The six nonneuronal subclasses in-
cluded astrocytes, oligodendrocyte precursor cells, oligodendro-
cytes, microglia, endothelial cells, and VLMCs (16). The molecular 
fingerprints of classified cell types from snRNA-seq were then used 
to register and annotate spatially resolved single cells in stereo-seq 
spatial transcriptome maps, using a recently developed cell-type an-
notation algorithm, Spatial-ID, which combines existing knowledge 
of reference single-cell RNA-seq data with spatial information of 
spatially resolved transcriptomics data (16). For each cell type, the 
authors quantified the density in each layer and cortical region by 
dividing the total number of cells in each area by the area size. The 
robustness of cell annotation was evidenced by high correlation 
value between the gene expression profiles of annotated cell types 
and those of snRNA-seq–defined cell types (16). The resulting re-
gional density of each cell type is also made available at https://
macaque.digital-brain.cn/spatial-omics.

Macaque receptor density from in vitro 
receptor autoradiography
In vitro autoradiography data for 14 neurotransmitter receptors 
were obtained from (40): AMPA, kainate, NMDA, GABAA, GABAB, 
GABAA∕BZ, M1, M2, M3, α1, α2, 5HT1A, 5HT2A, and D1. The authors 
applied quantitative in vitro receptor autoradiography to label 14 
neurotransmitter receptors in three male M. fascicularis brains 
(7.3 ± 0.6 years old; body weight 6 ± 0.8 kg) obtained from Covance 
Preclinical Services, where they were housed and used as control 
animals for pharmaceutical studies performed in compliance with 
legal requirements. Animal experimental procedures and husband-
ry had the approval of the respective Institutional Animal Care and 
Use Committee and were carried out in accordance with the Euro-
pean Council Directive of 2010 (40). We refer the reader to the work 
of Froudist-Walsh et al. (40) for details.

Briefly, brain tissue was serially sectioned in the coronal 
plane (section thickness, 20 μm) using a cryostat microtome (Leica, 
CM3050S). Sections were thaw mounted on gelatine-coated slides, 
sorted into 22 parallel series and freeze dried overnight. Receptor 
binding protocols encompass a preincubation to rehydrate sections, 
a main incubation with a tritiated ligand in the presence or absence 
of a nonlabeled displacer and a final rinsing step to terminate bind-
ing. Incubation with the tritiated ligand alone demonstrates total 
binding; incubation in combination with the displacer reveals the 

proportion of nonspecific binding sites. Specific binding is the dif-
ference between total and nonspecific binding and was less than 5% 
of the total binding. Thus, total binding is considered to be equivalent 
of specific binding. Sections were exposed together with standards 
of known radioactivity against tritium-sensitive films (Hyperfilm, 
Amersham) for 4 to 18 weeks depending on the receptor type. Ensu-
ing autoradiographs were processed by densitometry with a video-
based image analyzing technique. In short, autoradiographs were 
digitized as 8-bit images. Gray values in the images of the standards 
were used to compute a calibration curve indicating the relationship 
between gray values in an autoradiograph and binding site concen-
trations in femtomole per milligram (fmol mg−1) of protein. Con-
centrations of radioactivity (R, counts per minute) in each standard, 
which had been calibrated against brain tissue homogenate, were 
converted to binding site concentrations (Cb, fmol mg−1 of protein). 
The ensuing calibration curve was used to linearize the autoradio-
graphs—that is, to convert the gray value of each pixel into a binding 
site concentration in fmol mg−1 of protein (40).

The data of density of receptors per neuron were made available 
for 109 cortical areas of the macaque brain, which were identified 
based on their cytoarchitecture and receptor-architecture character-
istics (40). To enable comparison across datasets, we resampled 
these data to the RM macaque cortical parcellation of Kötter and 
Wanke (55). The macaque receptor data were manually mapped 
from the original macaque Yerkes19 to the macaque D99 atlas in 
NMT (National Institute of Mental Health Macaque Template) v1.3 
space (114). The RheMap toolbox (https://github.com/PRIME-RE/
RheMAP) was used to bring the RM atlas in NMT 1.3 macaque 
space. Last, once both the RM atlas and the receptor maps were in 
the same NMT space, the RM atlas was used to parcellate each re-
ceptor map (see fig. S30, A and B, for examples of the resulting map-
ping and corresponding gene expression maps).

For visual area V1 and six subregions of the inferior parietal lobe 
(PF, PFG, PG, Opt, PGop, and PFop), layer-specific receptor density 
was also obtained. Equidistant receptor profiles oriented perpen-
dicular to the cortical surface were extracted from the digitized au-
toradiographs to quantify receptor density across the cortical depth. 
To account for variations in cortical thickness, the length of each 
profile was normalized using linear interpolation to a uniform corti-
cal thickness of 100%. By comparing the receptor autoradiographs 
with adjacent cell body–stained sections, the position and thickness 
of each cortical layer could be determined along the entire cortical 
depth. Consequently, the receptor profiles were divided into seg-
ments corresponding to these layers. The area beneath each segment 
of the receptor profile was used to calculate the receptor density for 
each identified layer (64, 115). Because layer-specific data for these 
regions were available for both macaque gene expression and ma-
caque receptor density, mapping to the RM atlas was not required.

Human gene expression
Regional human gene expression profiles were obtained using micro-
array data from the AHBA (15), with preprocessing as recently de-
scribed (116). The AHBA is a publicly available transcriptional atlas 
containing gene expression data measured with DNA microarrays 
and sampled from hundreds of histologically validated neuroana-
tomical structures across normal postmortem human brains from six 
donors (five male and one female; age, 24–55 years). We extracted 
and mapped gene expression data to the 82 cortical regions of in-
terest (ROIs) of our parcellation using the abagen toolbox [https://
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abagen.readthedocs.io/ (39)]. Data were pooled between homolo-
gous cortical regions to ensure adequate coverage of both left (data 
from six donors) and right hemisphere (data from two donors). Dis-
tances between samples were evaluated on the cortical surface with a 
2-mm distance threshold. Only probes where expression measures 
were above a background threshold in more than 50% of samples 
were selected. A representative probe for a gene was selected based 
on the highest intensity. Gene expression data were normalized 
across the cortex using scaled, outlier-robust sigmoid normalization. 
A total of 15, 633 genes survived these preprocessing and quality as-
surance steps. For comparison with the macaque data, the human 
gene expression data were parcellated into a human-adapted version 
of the cortical parcellation of Kötter and Wanke (55), as adapted to 
the human brain by Bezgin et al. (57) (see fig. S30, A and B). We only 
included in our analyses genes with a one-to-one ortholog between 
H. sapiens and M. fascicularis. We also replicate our main results us-
ing human gene expression data from an alternative modality, RNA-
seq, which was available from two of six AHBA donors (15).

Gene-receptor pairs
Neurotransmitter receptors are protein complexes bound in the cell 
membrane. They can be classified as ionotropic (if signal transduc-
tion is mediated by ion channels) or metabotropic (G protein cou-
pled). Ionotropic receptors are multimeric complexes consisting 
of multiple subunits, each encoded by a distinct gene. Metabotropic 
receptors are monomeric complexes: Although there are several as-
sociated second messenger components, there is only a single pro-
tein embedded in the membrane, which is therefore encoded by a 
single gene. Therefore, for monomeric receptors, we correlated pro-
tein density with expression of the corresponding gene. For multi-
meric receptors, which involve distinct subunits, in our main analysis, 
we correlated protein density with expression of genes coding for 
the same subunits as used in (47).

1. GABAA: This pentamer can be coded by up to 19 subunits. In 
our main analysis, we show correlations with genes coding for the 
three primary subunits: α1, β2 and γ2.

2. GABAB: Our main analysis reports correspondence with genes 
coding for both subunits.

3. AMPA: In our main analysis, we show correlations with the 
GRIA1 gene. Correlations with additional genes as used in (48) are 
reported in the Supplementary Materials.

4. NMDA: In our main analysis, we show correlations with the 
GRIN1 gene, which encodes the N1 subunit. Correlations with addi-
tional genes as used in (48) are reported in the Supplementary Materials.

5. Kainate: We show results for the GRIK2 gene in our main anal-
ysis. Correlations with additional genes as used in (48) are reported 
in the Supplementary Materials.

Because macaque gene expression data from (16) do not include 
the CHRM3 gene that codes for the M3 receptor, this receptor could 
not be included in our main gene-receptor comparison. Macaque gene 
expression was also not available for ADRA1C (pertaining to the α1 
receptor), so we only included genes ADRA1A and ADRA1B. Likewise, 
ADRA2B and ADRA2C genes (pertaining to the α2 receptor) were 
not available, so we only used ADRA2A.

Macaque T1w:T2w map, dendritic spines, and parvalbumin 
and calretinin immunohistochemistry
For our main analysis, we used the map of in vivo macaque intracor-
tical myelination from T1w:T2w ratio, originally from (117) and 

made available by Froudist-Walsh et al. (40). These data were avail-
able in the same 109-area parcellation of the macaque cortex as the 
receptor data. We therefore followed the same procedure and resa-
mpled these data to the RM macaque cortical parcellation of Kötter 
and Wanke (55).

Burt et al. (42) assembled data on the immunohistochemically 
measured densities of calretinin (also known as calbindin-2) and 
parvalbumin-expressing inhibitory interneurons for several ma-
caque brain areas, from multiple immunohistochemistry studies 
(65–68). The same authors also provide T1w:T2w intracortical my-
elination data for the same regions (42), which we used for our rep-
lication analysis. Last, Burt et al. (42) also provide data about the 
number of spines of basal-dendritic trees of layer 3 pyramidal neu-
rons. To compare data across modalities, we manually mapped their 
data onto 38 bilateral regions of the RM parcellation (55).

In addition to the aggregated data of Burt et al. (42), we also used 
immunohistochemistry data about the prevalence of parvalbumin-
immunoreactive and calretinin-immunoreactive neurons for a sub-
set of macaque visual, auditory, and somatosensory cortical regions 
from (68), which was one of the original studies combined by Burt 
et  al. (42). Data were obtained from three normal adult macaque 
monkeys (Macaca fuscata), with approval from the animal research 
committee of RIKEN (Japan) and in accordance with the Guiding 
Principles for the Care and Use of Animals in the Field of Physiolog-
ical Sciences of the Japanese Physiological Society (68). Briefly, 
a monoclonal antiparvalbumin antibody (Sigma) and a poly-
clonal anticalretinin antiserum (SWant) were used on postmortem 
brain sections (30 μm of thickness). The number of parvalbumin-
immunoreactive and calretinin-immunoreactive neurons (all non-
pyramidal except for a few calretinin-immunoreactive pyramidal 
neurons in area 28) was counted in 200-μm-wide strips extending 
vertically to the cortical surface through all layers, and for each cor-
tical area, this process was repeated 16 times at different locations 
in the three monkeys (68). Here, we ranked areas based on their 
mean count of immunoreactive neurons (separately for calretinin 
and parvalbumin) as displayed in figure 4 of (68) and subsequently 
manually mapped these ranks onto bilateral regions of the RM par-
cellation (55).

Brain-related genes
In addition to the lists of receptor-related genes from (47, 48), we 
also obtained from Fulcher et al. (44) a list of 124 brain-related 
genes coding for neurotransmitter and neuropeptide receptors and 
subunits, as well as cell-type markers for parvalbumin, somatosta-
tin, vasoactive intestinal peptide, calbindin, and the four most abun-
dant genes in myelin. Of these, 99 genes were available and passed 
our quality control in both macaque and human, and were included 
in our analysis.

Alternative macaque gene expression data from RNA-seq
Bo et al. (17) made available bulk RNA-seq regional expression pat-
terns of 18 genes pertaining to neurotransmitter receptors, trans-
porters, and synthesis from the brain of M. fascicularis. Expression 
patterns are provided for 97 regions of the D99 macaque atlas, and 
we manually mapped them onto the RM parcellation (55). As re-
ported in the original study (17), nine adult cynomolgus monkeys 
(M. fascicularis; mean ± SD, 13.6 ± 7.8 years, eight males and one 
female) weighing 4.2 to 12.0 kg (8.6 ± 2.6 kg) were used for the 
study. All animal experimental procedures were approved by the 
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Animal Care and Use Committee of CAS Center for Excellence in 
Brain Science and Intelligence Technology, Chinese Academy of 
Sciences, and conformed to National Institutes of Health guidelines 
for the humane care and use of laboratory animals. We refer the 
reader to the original study (17) for details of regional bulk RNA-
seq procedures.

For the comparison between macaque RNA-seq gene expression 
and receptors, because only a small number of macaque genes are 
available from (17), we compare these genes against all available ma-
caque receptors pertaining to the same neurotransmitter systems. In 
addition to GABA and glutamate receptors, we also include in 
the comparison all available cholinergic receptors (M1, M2, and M3) 
against both acetylcholine-related genes in the RNA-seq dataset: 
CHAT (acetylcholine synthesis) and CHRNA1 (nicotinic receptor). 
Likewise, we compare both α1 and α2 adrenergic receptors against 
ADRA2C (α2 receptor) and PNMT (epinephrine synthesis); we 
compare both serotonin receptors (5HT1A and 5HT2A) with 
both available serotonin-related genes, HTR1B and HTR2C, and 
the only available dopamine receptor (D1) against all dopamine-
related genes in the RNA-seq dataset: DRD2 (D2 receptor), SLC6A2 
(dopamine reuptake), NTS (dopamine breakdown), and TH (do-
pamine synthesis).

Macaque anatomical connectivity
Anatomical connectivity for the macaque brain was obtained from 
the fully weighted, whole-cortex macaque connectome recently de-
veloped by Shen et  al. (109). This connectome was generated by 
combining information from two different axonal tract-tracing 
studies from the CoCoMac database (http://cocomac.g-node.org/
main/index.php) (118) with diffusion-based tractography obtained 
from nine adult macaques (Macaca mulatta and M. fascicularis) 
(109). The resulting connectome provides a matrix of weighted, di-
rected anatomical connectivity between each of the cortical ROIs of 
the RM atlas of Kötter and Wanke (109).

Macaque-human cortical expansion
To contextualize our regional pattern of interspecies correlation of 
gene expression, we used neuromaps (https://netneurolab.github.io/
neuromaps/) (119) to obtain the map of cortical expansion between 
macaque and human from (77), parcellated into Schaefer-400 cor-
tical atlas.

Statistical analyses
Correspondence across cortical regions was quantified using Spear-
man’s rank-based correlation coefficient, which is more robust to 
outliers and nonnormality than Pearson correlation and is recom-
mended when studying the correlation between mRNA and protein 
levels. To control for the spatial autocorrelation inherent in neuro-
imaging data, which can induce an inflated rate of false positives 
(58), we assessed the statistical significance of correlations nonpara-
metrically, by comparing each empirical correlation against a distri-
bution of 10, 000 correlations with null maps having the same spatial 
autocorrelation. This approach embodies the null hypothesis that 
the empirically observed correlation is simply due to the spatial au-
tocorrelation in the data, such that a similar correlation would be 
observed with random maps, so long as the spatial autocorrelation 
is the same. Null maps with preserved spatial autocorrelation were 
generated using Moran Spectral Randomization on the inverse 
Euclidean distances between parcel centroids, as implemented in 

the BrainSpace toolbox (https://brainspace.readthedocs.io/en/latest/) 
(59). Moran Spectral Randomization quantifies the spatial autocor-
relation in the data in terms of Moran’s I coefficient (120), by com-
puting spatial eigenvectors known as Moran eigenvector maps. The 
Moran eigenvectors are then used to generate null maps by impos-
ing the spatial structure of the empirical data on randomized sur-
rogate data (58, 59). The resulting null maps are therefore random, 
but with the same level of spatial autocorrelation as the empirical 
data. If a more extreme level of correlation is consistently observed 
between the empirical brain maps than with the null maps, then 
we can conclude that this association is not simply due to spatial 
autocorrelation.

For the correlations with multimeric receptors, the regional dis-
tribution of the same receptor is being compared against multiple 
genes (each coding for a different subunit of the receptor); therefore, 
in addition to showing the individual P values in the main text, in 
the Supplementary Materials, we also show results after applying the 
FDR correction for multiple comparison. Likewise, in the Supple-
mentary Materials, we show results after applying FDR correction 
when correlating the same receptor against multiple layer-specific 
expression patterns of the same gene.

To evaluate the potential role of long-range axonal projections in 
mediating gene-receptor correlations, we generate an updated re-
gional map for each gene, as follows

where x′
i
 is the updated gene expression level for region i; xj is the 

original gene expression level of region j, which region i is connected 
to; wij is the weight of the structural connection from region i to 
region j, representing the strength of the connection; and �(i) is the 
set of regions that region i has outgoing structural connections to.

In other words, for each region, we take a weighted average of the 
gene expression levels of the regions that it has outgoing structural 
connections to, where the weight is given by the strength of the con-
nection (34). Comparisons between proportions of significantly 
correlated patterns between different neurotransmitter types were 
performed using the χ2 test.

Supplementary Materials
This PDF file includes:
Figs. S1 to S30
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